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a b s t r a c t

The battle between phytopathogenic bacteria and their plant hosts has revealed a diverse suite of strate-
gies and mechanisms employed by the pathogen or the host to gain the higher ground. Pathogens
continually evolve tactics to acquire host resources and dampen host defences. Hosts must evolve surveil-
lance and defence systems that are sensitive enough to rapidly respond to a diverse range of pathogens,
while reducing costly and damaging inappropriate misexpression. The primary virulence mechanism
employed by many bacteria is the type III secretion system, which secretes and translocates effector pro-
irulence
lant cellular systems

teins directly into the cells of their plant hosts. Effectors have diverse enzymatic functions and can target
specific components of plant systems. While these effectors should favour bacterial fitness, the host may
be able to thwart infection by recognizing the activity or presence of these foreign molecules and initi-
ating retaliatory immune measures. We review the diverse host cellular systems exploited by bacterial
effectors, with particular focus on plant proteins directly targeted by effectors. Effector–host interactions

reveal different stages of the battle between pathogen and host, as well as the diverse molecular strategies
employed by bacterial pathogens to hijack eukaryotic cellular systems.

© 2009 Published by Elsevier Ltd.
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. Introduction

Many Gram-negative bacterial pathogens use type III secretion
ystems to inject virulence proteins directly in the cells of their
osts [1]. Phytopathogenic bacteria can inject as many as thirty
istinct type III secreted effector (T3SE) proteins into host cells,
hich can manipulate host cellular processes to promote infec-

ion [2–5]. These effectors target various plant cellular systems,
ncluding plant innate immunity, transcription, cell death, pro-
easome and ubiquitination systems, RNA metabolism, hormone
athways, and chloroplast function [6–9]. As our understanding of
he breadth of T3SE targets increases, a number of general pat-
erns are emerging. First, single T3SEs may target multiple host
actors. Second, T3SEs target critical steps in key host processes.
he system most commonly targeted is, perhaps not surprisingly,
he immune system. Third, distinct T3SEs can converge on spe-
ific host targets, perhaps providing redundancy and robustness.
inally, important host targets of T3SEs can directly interact with
ucleotide-binding-site leucine-rich-repeat (NBS-LRR) containing
esistance (R) proteins.

While the initial identification of putative T3SE targets via in
ivo or in vitro assays is often technically challenging, this effort is
requently dwarfed by the subsequent characterization and valida-
ion of biological function and relevance. In this review we focus

ainly on the type III-mediated interactions between the model
lant Arabidopsis thaliana and the widely studied plant pathogenic
acterium Pseudomonas syringae. We explore the data in this rapidly
eveloping field and attempt to distill general biological prin-
iples out of the complex molecular, biochemical, and genomic
ata.

. Multiple ways to target plant immunity

Plant immune systems are emerging as dominant targets of
3SEs, and it is very likely that the selective pressures imposed
y pathogens in general are responsible for shaping and driv-

ng the evolution of these systems [10–12]. Initially, pathogen- or
icrobe-associated molecular patterns (PAMPs or MAMPs) trig-

er an innate immunity response in the host (PAMP-triggered
mmunity or PTI) [11]. PAMPs are conserved epitopes presented by
athogen molecules, which are recognized by host pattern recogni-
ion receptors (PRRs). Well characterized phytopathogenic PAMPs
nclude the flagellin subunit from the bacterial flagella and the elon-
ation factor Ef-Tu [13]. PTI (a.k.a. basal defence) is usually effective
t preventing infection, and includes responses such as pathogen-
nduced gene expression, the production of reaction oxygen species,
nd the reinforcement of the plant cell wall.

The suppression of bacterial growth by the innate immune sys-
em invariably imposes selective pressures on the invading microbe
o overcome these defences [14]. One very successful strategy
mployed by bacterial pathogens relies on PTI-suppressing T3SEs.
his tactic has been documented for multiple T3SEs, and is referred
o as effector-triggered susceptibility (ETS) [10,12,15].

The second branch of plant immunity relies on the recognition
f T3SEs by host R proteins in a process termed effector-triggered

mmunity (ETI) [16]. ETI typically initiates a rapid and localized pro-
rammed cell death response termed the hypersensitive response
HR). R proteins rarely recognize T3SEs directly, and instead, most

proteins physically interact with and monitor the host targets of
acterial effectors. ETI is triggered by T3SE-mediated modification

f a host target monitored by an R protein [16,17]. This ‘guarding’
ctivity adds a level of robustness to the immune system since it
emoves the need for R proteins to chase an evolving target, and
nstead focuses on the integrity of its own systems. While rare,
irect interaction between an R protein and a T3SE has been demon-
mental Biology 20 (2009) 1055–1063

strated for the Ralstonia solanacearum T3SE PopP2 and the R protein
RRS1-R [18].

Pathogens can respond to ETI by evolving away from recogni-
tion. This can occur by evolving or acquiring new allelic variants
either through pathoadaptation (the mutational process) or hor-
izontal gene transfer (recombination). Alternatively, strains may
acquire or evolve additional T3SEs that specifically block this ETI,
resulting in a second level of effector-triggered susceptibility (ETS)
[12,14,19,20].

In this first section, we discuss effectors that have been demon-
strated to target plant immunity. We initially discuss the direct
targeting of PTI and/or ETI by T3SEs, and subsequently, how plants
have evolved to recognize the presence of pathogens via their T3SEs.
We then present examples of other host systems targeted by T3SEs
that indirectly alter host immunity. Although the line between
direct and indirect targeting of plant immunity can be difficult to
define, we base our discussion on whether the T3SE directly alters
a component of PTI and/or ETI signalling, or usurps another plant
system to indirectly affect plant immunity (Fig. 1).

2.1. Directly targeting plant immunity

2.1.1. Targeting PTI
2.1.1.1. HopAI1. The recognition of the flagellin flg22 epitope by
the FLS2 receptor induces PTI in Arabidopsis via the activation of
the MAP kinases MPK3 and MPK6 [21]. These MAP kinases are
targeted by the P. syringae pv. tomato DC3000 (PtoDC3000) T3SE
HopAI1PtoDC3000 (hereafter HopAI1), which is a member of a family
of proteins that display a novel phosphothreonine lyase function
[22]. This activity, which involves the irreversible removal of phos-
phate groups from phosphothreonines, was first demonstrated in
the Shigella T3SE OspF on phosphothreonine residues in the activa-
tion loop of MAP kinases [22]. HopAI1 is an OspF-related T3SE that
physically interacts with MPK3 and MPK6 during in vitro and in
vivo co-precipitation assays [23]. HopAI1-mediated phosphothre-
onine lyase activity inactivates MPK3 and MPK6, and consequently
suppresses downstream events associated with PTI [23].

2.1.2. Targeting PTI and ETI
2.1.2.1. AvrPto and AvrPtoB. AvrPto1 and AvrPtoB (a.k.a. HopAB2)
are unrelated effectors carried by PtoDC3000, a strain virulent on
Arabidopsis and tomato [24]. AvrPto1PtoDC3000 and AvrPtoBPtoDC3000
(hereafter, AvrPto and AvrPtoB, respectively) can suppress very
early immune responses mediated by MAPK cascades, suggest-
ing that suppression occurs immediately after signal perception
or before MAPKKK signalling [25]. Recent publications have ele-
gantly demonstrated that AvrPto and AvrPtoB target receptor-like
kinases (RLKs) and/or PAMP receptors to interfere with their down-
stream signalling during infection. These receptors include the
brassinolide-associated RLK BAK1 (BRI1 associated kinase 1), the
flagellin receptor FLS2, the Ef-Tu receptor EFR, and the chitin recep-
tor CERK1 [26–29].

AvrPto and AvrPtoB interact with BAK1 in the split-ubiquitin
yeast two-hybrid assay, by co-immunoprecipitation from proto-
plasts, and in in vitro pull-down assays [26–28]. BAK1 and the
brassinolide receptor BRI1 (brassinosteroid insensitive 1) form a
complex that is necessary for brassinolide-mediated plant growth
and development [30]. BAK1 contributes to innate immunity
through its association with the flagellin receptor FLS2 in vivo
[31–34]. Perception of flagellin or the flg22 peptide is necessary
for flagellin-induced signalling and defence, and for the elicita-

tion of defence signalling to other PAMP inducers like Ef-Tu, HrpZ,
peptidoglycan and lipopolysaccharide [27,31,33,35]. Suppression of
PAMP signalling is correlated with the direct binding of AvrPto or
AvrPtoB to BAK1. AvrPto mutants (i.e. S46P and Y89D) or AvrPtoB
truncations do not suppress PAMP signalling and display reduced
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Fig. 1. Plant systems targeted by phytopathogenic type III effector proteins. The direct targets of phytopathogenic T3SEs are grouped according to the plant systems to which
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iological function in Arabidopsis. The Arabidopsis protein ROC1 is required for the a
esignated as a co-factor. Effectors are shown with a red background, while host inte
o be targets of the corresponding effector but for which a direct interaction has no

inding to BAK1 [27,36]. Both AvrPto and AvrPtoB are believed to
lock PTI by interfering with the interaction between BAK1 and
LS2 [26,27]. In support of this, P. syringae knockouts of AvrPto and
vrPtoB induce a slightly increased interaction between BAK1 and
LS2, and consequently increased PTI [26,27].

AvrPto and AvrPtoB also inhibit PTI signalling through their
irect interaction with the PAMP receptors FLS2, EFR and CERK1
26–29]. AvrPtoB is an E3 ligase, a function identified by its
tructural similarity to the eukaryotic E3 ligases [37,38]. AvrPtoB
biquitinates FLS2, EFR and CERK1 in vitro, ubiquitinates FLS2 in
lanta, and degrades CERK1 in planta, the latter presumably by ubiq-
itination [26,29]. The immunity-suppression function of AvrPtoB

s dependent on its E3 ligase activity, as a PtoDC3000�avrPtoB
train complemented with non-catalytically active AvrPtoB shows
educed bacterial virulence compared to PtoDC3000 [26,29].

In addition to their PTI-suppression abilities, AvrPto and AvrPtoB
lso induce ETI through the R protein PRF, via interactions with their
ost targets PTO and/or FEN [39–43]. The co-crystal structure of the
vrPto–PTO complex revealed two key interfaces that mediate their

nteraction: the P+1 loop of PTO with the GINP motif of AvrPto, and
second PTO loop with an AvrPto helical bundle [44]. Interestingly,
utations which disrupt either of the AvrPto-interacting loops in

TO result in constitutive activation of PRF-dependent defences
44]. Thus, it appears that the two PTO loops negatively regulate
RF-mediated defences in tomato in the absence of AvrPto [44–46].
inding of AvrPto to PTO is proposed to change the conformation

f PTO, causing PTO to release PRF from its inactive state [44].

The N-terminal domain of AvrPtoB interacts with FEN and PTO
inases to initiate PRF-mediated defences [36,43,47]. Like PTO,
EN interacts directly with PRF [48]. The C-terminal E3 ubiqui-
in ligase domain of AvrPtoB specifically targets FEN kinase for
t target proteins or genes. The HopW interactors, WIN1-3, have yet to be assigned a
on of AvrRpt2 but does not appear to be a virulence target of AvrRpt2 and has been
rs are shown with a grey background. Asterisks indicate proteins or genes predicted
een demonstrated.

degradation by the proteasome, thereby inhibiting ETI [37,38,43].
As such, FEN/PRF-mediated defences are termed Rsb for Resistance
suppressed by AvrPtoB C terminus [47].

2.1.2.2. AvrRpt2, AvrRpm1 and AvrB. P. syringae T3SEs
AvrRpt2PtoJL1065 and AvrRpm1PmaM2 (hereafter AvrRpt2 and
AvrRpm1, respectively) also suppress PAMP-triggered innate
immunity, enhancing the growth of otherwise virulence-
attenuated strains [49,50]. Immune suppression by AvrRpt2
and AvrRpm1 likely occurs in several ways, one of which is medi-
ated through their common host target, RIN4 (RPM1-interacting
protein 4), which is monitored by at least two distinct R proteins
(see below). RIN4 is a negative regulator of basal defences. The in
planta overexpression of RIN4 inhibits PTI, while PTI is enhanced in
rin4 plants [49,50]. RIN4 has no apparent functional or enzymatic
motifs; therefore, it has been suggested that RIN4 acts as an
adaptor protein that negatively modulates the signal transduction
from several PAMP receptors [50].

AvrRpt2 is a cysteine protease which is self-cleaved in planta
to form a stable active 21 kDa protein [51,52]. AvrRpt2 must be
activated in planta via its interaction with the cyclophilin ROC1, a
peptidyl-prolyl cis–trans isomerase involved in protein folding [53].
ETI is induced by the R protein RPS2 upon AvrRpt2-mediated cleav-
age of RIN4 [54,55]. This cleavage occurs at two AvrRpt2 cleavage
site (RCS1 and RCS2), which are similar in sequence to the AvrRpt2-
self processing site [53,56–58]. RIN4 negatively regulates RPS2, as

rin4 plants exhibit constitutive activation of RPS2 and are seedling
lethal [54,57].

The P. syringae pv. glycinea effector AvrBPgyrace0 also interacts
with RIN4 but appears to suppress innate immunity via its inter-
action with another protein RAR1 [59]. RAR1, along with SGT1 and
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SP90, have previously been shown to regulate the stability of R
roteins [60]. RAR1 also negatively regulates PTI as rar1 mutants
isplay enhanced callose deposition when treated with flg22 [59].
vrB transgenic Arabidopsis treated with flg22 show an 80% reduc-
ion in callose deposition which is lost in rar1 mutant lines [59].

AvrRpm1 co-immunoprecipitates with RIN4, while AvrB inter-
cts with RIN4 in yeast two-hybrid and co-immunoprecipitation
ssays [49,61,62]. Both effectors induce the phosphorylation of
IN4 and induce RPM1-mediated ETI [49,63]. Protein crystallog-
aphy shows that AvrB residues interacting with RIN4 are required
or RPM1 activation, and that AvrB has an ADP-nucleotide-binding
omain necessary for RPM1-mediated defences and for phospho-
ylation by an unknown protein in Arabidopsis [62,64]. In soybean,
vrB is recognized by the RPG1 R protein [65]. AvrB mutants in the
rabidopsis RIN4 or ADP binding domains are no longer recognized
y the soybean R protein, suggesting that AvrB is recognized in a
onserved manner in these divergent hosts [61,62].

The complex interplay of multiple T3SEs with RIN4 clarified the
bservation that AvrRpt2 can interfere with RPM1-mediated ETI
66,67]. AvrRpt2 cleaves RIN4 from the membrane, leaving only a
ragment of membrane-embedded RIN4, which presumably cannot
e phosphorylated by AvrB or AvrRpm1 [49,58,68]. Thus AvrRpt2
riggers RPS2-mediated ETI, while suppressing RPM1-mediated
TI.

RIN4 is not the only virulence target of AvrRpm1, AvrB and
vrRpt2, as virulence is not lost in rin4 plants [56,68–70]. RIN4
omologues are found in most plant species, and eleven RIN4 par-
logs are present even in the small genome of Arabidopsis [58]. Most
f these have the RCS sequence and some have been demonstrated
o be cleaved by AvrRpt2 [56,58]. Like RIN4, they are predicted to
e membrane-associated by palmitoylation or prenylation and are
redicted to bind AvrB [57,58]. It has been suggested that RIN4
cts as a decoy to trigger R gene-mediated defences, while the true
irulence target may be one of the RIN4-like proteins [71].

.1.3. Targeting ETI

.1.3.1. HopAR1. The P. syringae pv. phaseolicola effector
opAR1Pphrace3 (formerly AvrPphB, hereafter HopAR1), part of

he Yersinia pestis YopT superfamily, is a papain-like cysteine pro-
ease produced as a 35 kDa protein, which self-cleaves to a mature
8 kDa form, revealing a functional myristoylation site for mem-
rane targeting [69,72–75]. HopAR1 cleaves the serine/threonine
rotein kinase PBS1 at a site similar to its autoprocessing sequence,
n activity recognized by the R protein RPS5 which guards PBS1
76–80].

In the absence of HopAR1, PBS1 and RPS5 interact in planta
hrough the coiled-coil (CC) domain of RPS5 [78,80]. PBS1 protein
inase autophosphorylation is necessary for the interaction of PBS1
ith RPS5 [78,80]. Constitutive defence signalling through RPS5 is

revented by the LRR domain of RPS5, as RPS5 truncations lacking
his domain exhibit a constitutive HR [80]. Based on mutant stud-
es, Ade and colleagues [80] proposed that RPS5, in a complex with
hosphorylated PBS1, remains in an inactive state by interaction of
he LRR domain with the NBS domain. HopAR1 cleavage of PBS1
ikely changes the conformation of RPS5 making the NBS domain
ccessible for nucleotide exchange and allowing downstream sig-
alling events and defence induction to occur.

.1.3.2. PopP2. The Ralstonia solanacearum PopP2 effector is part of
he Yersinia pestis YopJ superfamily. PopP2 is an example of a bacte-
ial T3SE that interacts directly with its cognate R protein, RRS1-R

18]. RRS1-R is an unusual R protein with a WRKY motif characteris-
ic of plant WRKY transcription factors and a TIR-NBS-LRR structure
the TIR domain has homology to the Drosophila Toll and mam-

alian interleukin-1 receptors) [81]. RRS1-R is re-localized to the
ucleus following PopP2 interaction [18].
mental Biology 20 (2009) 1055–1063

PopP2 also interacts with RD19, an Arabidopsis cysteine pro-
tease whose expression is induced during R. solanacearum infection
[82], as shown by Förster resonance energy transfer (FRET). RD19
is normally found in motile vacuole-associated vesicles, but is re-
localized to the nucleus upon co-expression with PopP2 [82]. While
RD19 does not interact with RRS1-R, these two host proteins seem
to have an additive affect on PopP2-mediated resistance [82].

2.1.3.3. Other effectors. A number of T3SEs suppress cell death
responses, including cell death induced by the T3SE HopPsyA
or the pro-apoptotic protein Bax [83], nonhost-associated cell
death [47,84–87], and cell death induced by specific plant R genes
[47,66,88,89]. It is clear that many more cell death-associated tar-
gets of phytopathogenic T3SEs remain to be identified.

2.2. Indirectly targeting plant immunity

2.2.1. Ubiquitination/proteasome
Eukaryotic ubiquitination/proteasome systems have been rec-

ognized as important targets of microbial effectors [90,91]. One of
the clearest examples of hijacking the plant ubiquitin pathway is
the structural mimicry of eukaryotic E3 ligases by AvrPtoB [38].
As discussed above, AvrPtoB possesses E3 ligase activity against a
number of proteins involved in the immune response in vitro, and
requires this activity to suppress plant cell death and immunity in
vivo [26,29,37,38,43,92] (see Section 2.1.2.1).

Another example of hijacking the plant proteasome to interfere
with immunity comes from the P. syringae T3SE HopM1PtoDC3000
(hereafter HopM1), which induces the degradation of the ARF gua-
nine exchange factor (GEF) family protein AtMIN7 [93]. AtMIN7 is
required for a robust immune response against P. syringae. Finally,
seven T3SEs from R. solanacearum termed the GALA effectors pos-
sess an F-box domain and can interact with different Arabidopsis
Skp1-like proteins that are components of SCF-type E3 ubiquitin
ligase complexes [94]. These effectors are required for optimal vir-
ulence on Arabidopsis and tomato; however, the specific targets of
these proteins remain to be identified.

2.2.2. RNA processing
The P. syringae T3SE HopU1PtoDC3000 (hereafter HopU1) is a

mono-ADP-ribosyltransferase (ADP-RT) that ribosylates at least
three chloroplast RNA-binding proteins (CP-RBP) and two glycine-
rich RNA-binding proteins (GR-RBPs) [95]. One of the GR-RBPs,
GRP7, is required for optimal resistance to P. syringae, indicating
a role in plant immunity, and suggests that P. syringae may alter
RNA metabolism in order to promote pathogen virulence.

The miRNA pathway is a component of RNA metabolism that
is important for plant immunity [96]. The effector AvrPtoB, which
suppresses both PTI and ETI, also suppresses the transcription of
the PAMP-inducible miRNAs At-miR393a and At-miR393b in Ara-
bidopsis. This transcriptional suppression is independent of the
E3 ligase activity of AvrPtoB [96]. In addition, AvrPto interferes
with the accumulation of mature miR393, however unlike AvrPtoB,
AvrPto interference appears to be posttranscriptional [96]. The T3SE
HopT1PtoDC3000 (hereafter HopT1) also suppresses miRNA activity.
HopT1 may interfere with the splicing activity of ARGONAUTE1
(AGO1) towards its targets and with miRNA-directed translational
inhibition [96]. The direct targets of AvrPtoB, AvrPto and HopT1
related to the miRNA pathway remain to be determined.

2.2.3. Plant hormones

A number of T3SEs manipulate plant hormone signalling path-

ways; however, direct targets remain to be identified. Upregulation
of auxin signalling contributes to disease susceptibility, and numer-
ous pathovars of P. syringae produce auxin presumably to promote
infection [97,98]. Additionally, the T3SE AvrRpt2 upregulates auxin
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evels in Arabidopsis and contributes to increased disease sus-
eptibility [99]. The hormone abscisic acid (ABA), responsible for
rought tolerance and growth suppression, also contributes to dis-
ase susceptibility and is upregulated by AvrPtoB [100]. The T3SE
opAM1PtoDC3000 (formerly AvrPpiB, hereafter HopAM1) induces
ypersensitivity to ABA in Arabidopsis plants and promotes P.
yringae virulence in drought stressed plants indicative of manipu-
ation of ABA signalling [101].

As previously discussed, the P. syringae T3SEs AvrPtoB and
vrPto interact with the Arabidopsis RLK BAK1, which associates
ith the BRI1 brassinosteroid receptor. This hormone plays an

mportant role in defence against a broad range of pathogens in
obacco and rice [27,102]. AvrPto and AvrPtoB also affect the ethy-
ene pathway via their induction of tomato ACC oxidases involved
n ethylene biosynthesis [103].

The extensive crosstalk that exists between hormone signalling
athways in plants makes it challenging to distinguish between
irect and indirect effects. Clearly, identifying the direct targets of
hese effectors will be essential for teasing apart these complex
nteractions [104].

.2.4. Other target systems of interest
The P. syringae T3SE HopI1PmaES4326 (hereafter HopI1) is targeted

o the plant chloroplast and can induce structural remodeling of the
hylakoids and suppress salicylic acid accumulation [105]. HopI1

ay target chloroplastic Hsp70 since it possesses a J domain which
s typically involved in mediating interactions with Hsp70 proteins
105]. The J domain of HopI1 can functionally substitute for the J
omain of yeast Hsp40 (Ydj1) which stimulates the ATPase activity
f Hsp70; however, a direct interaction between HopI1 and Hsp70
as yet to be demonstrated [105].

Numerous other T3SEs possess N-terminal sequences that pre-
icted chloroplast localization, suggesting that this organelle may
e a critical target for many T3SEs [106]. Conversely, the T3SE
opAA1 is currently the only effector known to localize to the
itochondria, where it inhibits respiration in yeast [107].

The cytoskeleton is a common host target of mammalian
athogens [108]. In plants, the cytoskeleton plays an important role

n plant defence responses, cellular trafficking and plasma mem-
rane organization [109–111]; however, to date no phytopathogenic
3SE has been demonstrated to target the plant cytoskeleton.
owever, T3SEs do target the secretory system of plants. AtMIN7

targeted by HopM1) is an ARF GEF [93]. Since ARF GEFs are involved
n intracellular vesicle trafficking in eukaryotes, it is possible that
opM1 may alter intracellular trafficking to promote pathogen
irulence. In support of this, atmin7 plants show decreased plant
mmunity, and the virulence of P. syringae lacking HopM1 could be
estored by the treatment of Arabidopsis plants with Brefeldin A, an
nhibitor of vesicle trafficking [93]. Additionally a yeast two-hybrid
nalysis of AvrPto against a tomato cDNA library identified two Ras-
elated putative GTP-binding proteins (API1 and API2), similar to
hose involved in vesicular trafficking [112].

Various studies have identified other host proteins that interact
ith effectors, though the plant systems specifically targeted are

ot always clear. Bogdanove and Martin [112] identified a stress-
elated protein (API3) and a putative N-myristoyltransferase (API4)
s putative targets of AvrPto. The T3SE HopW1-1PmaES4326 (formerly
opPmaA, hereafter HopW1-1) interacts with three Arabidopsis
roteins; WIN1 a putative acetylornithine transaminase, WIN2 a
redicted protein phosphatase 2C, and WIN3 a member of the fire-
y luciferase superfamily [113]. Although these proteins have yet to

e assigned to a specific host cellular system, genetically modifying
heir expression levels results in altered host susceptibility [113].
inally, the DspA/E effector from the fire blight pathogen Erwinia
mylovora interacts with several apple RLKs in yeast two-hybrid
creens and in in vitro pull-down assays [114]. As these RLKs are
mental Biology 20 (2009) 1055–1063 1059

found in susceptible and resistant cultivars of apple [114], it is still
unclear how they may be manipulated by the pathogen.

3. Targeting transcription: nuclear-based recognition of
transcription-activator-like (TAL) effectors

The Xanthomonas AvrBs3 family of TAL effectors are character-
ized by a central repeat domain, a nuclear localization signal, and
an acidic transcriptional activation domain, and are localized to
the nucleus via their interaction with importin � [115–119]. Unlike
the effectors discussed thus far, AvrBs3 targets plant gene pro-
moters. In infected pepper plants, the central repeat domain of
AvrBs3 binds to a conserved element in the upa20 promoter and
the AvrBs3 activation domain induces upa20 expression. Upa20 is a
bHLH transcription factor and master regulation of cell expansion.
Consequently, AvrBs3-mediated induction results in hypertrophy
of the mesophyll tissue [120,121].

Recognition of AvrBs3 is mediated by the pepper BS3 resistance
protein in a unique manner [122,123]. In addition to binding to the
upa20 promoter, the repeat domain of AvrBs3 also binds to the BS3
resistance gene promoter and induces its expression, initiating ETI
[124]. Therefore, by mimicking the upa20 promoter, BS3 subverts
AvrBs3’s virulence function and instead initiates plant defences.

Several other Xanthomonas effectors also have characteristics
of transcription factors suggesting that they act by modulating
gene transcription [119]. The XopD SUMO protease has effects on
host transcription and additionally can target SUMO-conjugated
proteins in planta [125,126]. As well, avrBs3-like genes including
avrXa27, pthXo1, pthXo6 and pthXo7 induce the expression of their
cognate resistance genes or other putative targets although they
have not yet been shown to bind any plant promoters [127–129].
These Xanthomonas effectors illustrate that the nuclear targeting of
host genes and/or proteins is an effective strategy that can be used
to modify host metabolism [4].

4. Emerging and established themes of phytopathogenic
T3SE targets

Over 200 T3SEs and 60 effector families and subfamilies have
been identified in P. syringae alone [3,130]. One of the major chal-
lenges facing molecular plant pathologists is to identify the host
targets of these effectors, and assess their role in disease and
defence. From the examples outlined above, there are established
and emerging themes regarding T3SE targets that may help to guide
future studies (Table 1).

First, a single T3SE may have multiple targets in the plant host
[7]. This is best exemplified by the multiple targets of AvrPtoB
and AvrPto described above. Additionally, HopM1 has 21 strong
interacting partners identified by yeast two-hybrid assays, many of
which may represent true targets [93]. Additionally, the five RNA-
binding proteins ribosylated by HopU1 may all represent virulence
targets [95]. AvrRpm1 and AvrRpt2 have as yet unidentified targets
besides RIN4, and AvrB can target at least RIN4 and RAR1 [59,68].
The multiple upa genes upregulated by the TAL effector AvrBs3 are
all potential host targets.

Second, T3SEs target multiple critical nodes of essential host
systems. For example, T3SEs target multiple steps of PTI, includ-
ing PAMP receptors (FLS2 and CERK1), receptor-associated proteins
(BAK1), and downstream signalling components (MAPKs and
RAR1). Importantly, each of the PTI components targeted by T3SEs is

required for optimal plant immunity, highlighting the use of effec-
tors as probes to identify important components of plant systems
[6]. Pathogenic bacteria can use either single effectors (e.g. AvrPtoB)
or multiple effectors (e.g. AvrPtoB and HopAI1) to disrupt PTI [15].
This strategy has resulted in very effective and robust suppression of
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Table 1
Host targets of phytopathogenic type III effector proteins.

Effector Strain Target Potential interaction indicated by Ref Direct interaction demonstrated by Ref

AvrB Pgy race0a RIN4 Co-immunoprecipitation [49]
RAR1 Genetics (EMS) [59] Co-immunoprecipitation [59]

AvrBs3 Xcv 85-10b Bs3 Genetics (natural diversity) [133] Electrophoretic mobility shift assay, chromatin
immunoprecipitation

[124]

Upa20 Transcriptional upregulation [121] Electrophoretic mobility shift assay, chromatin
immunoprecipitation

[121]

AvrPto Pto DC3000c BAK1 Split-ubiquitin yeast two-hybrid,
co-immunoprecipitation

[27]

FLS2 In vitro pull-down, co-immunoprecipitation,
split-YFP

[28]

EFR In vitro pull-down, co-immunoprecipitation,
split-YFP

[28]

CERK1 [27] Co-immunoprecipitation [27]
Pto Genetics (natural diversity) [40] Gal4 yeast two-hybrid; LexA [134,135]
Api1, Api2, Api3, Api4 LexA yeast two-hybrid [112]

AvrPtoB Pto DC3000c BAK1 Co-immunoprecipitation; in vitro pull-down [27,26]
FLS2 Ecotypic diversity [136] In vitro pull-down [26]
EFR In vitro ubiquitination [26]
CERK1 Gal4 yeast two-hybrid [29]
Pto LexA yeast two-hybrid [42]
Fen Candidate gene approach [43] LexA yeast two-hybrid [43]

AvrRpm1 Pma M2d RIN4 Co-immunoprecipitation [49]

AvrRpt2 Pto JL1065c RIN4 Co-immunoprecipitation [54,55]
ROC1 Substrate of enzyme [53]

DspA/E Ea CFBP1430e LexA yeast two-hybrid, in vitro pull-down [114]
HopAI1 Pto DC3000c MPK3/6 In vitro pull-down, co-immunoprecipitation [23]
HopAR1 Pph race3f PBS1 Genetics (EMS) [77] Co-immunoprecipitation [79]
HopI1 Pma ES4326d HSP70 Yeast complementation [105]
HopM1 Pto DC3000c AtMIN7 LexA yeast two-hybrid, in vivo pull-down [93]
HopU1 Pto DC3000c GRP7 Substrate of enzyme [95]
HopW1-1 Pma ES4326d WIN1, WIN2, WIN3 SRS yeast two-hybrid, in vitro pull-down [113]
PopP2 Rs GMI1000g RRS1 Genetics (natural diversity) [81] Split-ubiquitin yeast two-hybrid, colocalization [18]

RD19 Gal4 yeast two-hybrid, FLIM [82]

a Pgy: Pseudomonas syringae pv. glycinea.
b Xcv: Xanthomonas campestris pv. vesicatoria.
c Pto: Pseudomonas syringae pv. tomato.
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d Pma: Pseudomonas syringae pv. maculicola.
e Ea: Erwinia amylovora.
f Pph: Pseudomonas syringae pv. phaseolicola.
g Rs: Ralstonia solanacearum.

TI by virulent pathogens, with multiple effectors apparently sup-
ressing the immune response in a redundant (at least to our crude

evel of resolution) manner [131]. It remains to be determined if a
imilar strategy is employed to target other plant systems besides
TI.

Third, multiple T3SEs converge on important host targets. This
s exemplified by the convergent targeting of RIN4 by the evolu-
ionarily unrelated effectors AvrB, AvrRpm1 and AvrRpt2. Another
xample of convergence onto important host targets is the target-
ng of PTO, BAK1, FLS2, EFR and CERK1 by the T3SEs AvrPto and
vrPtoB.

Fourth, host targets of T3SEs can directly interact with NBS-LRR
ontaining R proteins (originally proposed as the “guard hypothe-
is”) [16,17]. This is exemplified by RIN4 and the R proteins RPM1
nd RPS2, PTO and FEN with PRF, and PBS1 with RPS5. It remains to
e established whether effector targets associated with resistance
roteins are decoys for the T3SEs or whether they are true viru-

ence targets [71]. For TAL effectors the resistance gene promoter
an mimic an important promoter element of a virulence target as
xemplified by the BS3 promoter [121,124].
. Conclusions

Disease and immunity processes of plants share many com-
onalities (derived both from homology as well as simply due to
convergence) with those seen in animal systems. The host systems
exploited by phytopathogens described above are also common tar-
gets of animal pathogens, including the targeting of host immunity
and ubiquitin/proteasome systems. Furthermore, the themes out-
lined for phytopathogenic T3SE targets also hold true for animal
T3SEs, with the exception of the guarding of T3SE targets by host
resistance proteins.

Up to now, the host cytoskeleton is a significant exception to
the above systems. While it is a critical component of both animal
and plant cells, and is commonly targeted by T3SEs from ani-
mal pathogens, it has not yet been found to be targeted by plant
pathogens despite its important role in cellular integrity and immu-
nity. Recent work in our group, however, has shown that the P.
syringae T3SE HopZ1a (a YopJ family member) is an acetyltrans-
ferase that is activated by tubulin and can destroy host microtubule
networks (A.H. Lee, D.S. Guttman, D. Desveaux, in preparation),
adding one more important commonality between targets of plant
and animal pathogens.

Evolutionarily conserved and convergent host targets attacked
by bacterial pathogens of plants and animals emphasize the com-
mon, fundamental strategies that exist to exploit eukaryotic hosts

despite significant differences in host cell physiology and archi-
tecture. As such, comparative analysis of T3SE function in diverse
hosts, and effector-associated phenotypes in heterologous model
systems such as yeast will provide powerful means to study effec-



velop

t
c
i
h
t

A

G
d
C
G
E
c

R

J.D. Lewis et al. / Seminars in Cell & De

or function, identify important host targets, and gain insight into
onserved and fundamental infection strategies [132]. These stud-
es are essential for understanding the fundamental principles of
ost–pathogen interactions, as well as for the development of effec-
ive anti-virulence treatments.
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